Abductive Inference in Probabilistic Logic Programs

نویسندگان

  • Gerardo I. Simari
  • V. S. Subrahmanian
چکیده

Action-probabilistic logic programs (ap-programs) are a class of probabilistic logic programs that have been extensively used during the last few years for modeling behaviors of entities. Rules in ap-programs have the form “If the environment in which entity E operates satisfies certain conditions, then the probability that E will take some action A is between L and U”. Given an ap-program, we are interested in trying to change the environment, subject to some constraints, so that the probability that entity E takes some action (or combination of actions) is maximized. This is called the Basic Probabilistic Logic Abduction Problem (Basic PLAP). We first formally define and study the complexity of Basic PLAP and then provide an exact (exponential) algorithm to solve it, followed by more efficient algorithms for specific subclasses of the problem. We also develop appropriate heuristics to solve Basic PLAP efficiently.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bayesian Abductive Logic Programs: A Probabilistic Logic for Abductive Reasoning

In this proposal, we introduce Bayesian Abductive Logic Programs (BALP), a probabilistic logic that adapts Bayesian Logic Programs (BLPs) for abductive reasoning. Like BLPs, BALPs also combine first-order logic and Bayes nets. However, unlike BLPs, which use deduction to construct Bayes nets, BALPs employ logical abduction. As a result, BALPs are more suited for problems like plan/activity reco...

متن کامل

ProPPR: Efficient First-Order Probabilistic Logic Programming for Structure Discovery, Parameter Learning, and Scalable Inference

A key challenge in statistical relational learning is to develop a semantically rich formalism that supports efficient probabilistic reasoning using large collections of extracted information. This paper presents a new, scalable probabilistic logic called ProPPR, which further extends stochastic logic programs (SLP) to a framework that enables efficient learning and inference on graphs: using a...

متن کامل

Probabilistic Abductive Logic Programming in Constraint Handling Rules

A class of Probabilistic Abductive Logic Programs (PALPs) is introduced and an implementation is developed in CHR for solving abductive problems, providing minimal explanations with their probabilities. Both all-explanations and most-probable-explanations versions are given. Compared with other probabilistic versions of abductive logic programming, the approach is characterized by higher genera...

متن کامل

Implementing Probabilistic Abductive Logic Programming with Constraint Handling Rules

A class of Probabilistic Abductive Logic Programs (PALPs) is introduced and an implementation is developed in CHR for solving abductive problems, providing minimal explanations with their probabilities. Both all-explanations and most-probable-explanations versions are given. Compared with other probabilistic versions of abductive logic programming, the approach is characterized by higher genera...

متن کامل

Probabilistic Abduction using Markov Logic Networks

Abduction is inference to the best explanation of a given set of evidence. It is important for plan or intent recognition systems. Traditional approaches to abductive reasoning have either used first-order logic, which is unable to reason under uncertainty, or Bayesian networks, which can handle uncertainty using probabilities but cannot directly handle an unbounded number of related entities. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010